ОБЗОР НЕКОТОРЫХ МЕТОДОВ АНАЛИЗА ДАННЫХ
I. Традиционные методы статистического анализа
y = f (x1, x2, …, xn),
Промышленная статистика
Планирование экспериментов. Искусство располагать наблюдения в определенном порядке или проводить специально спланированные проверки с целью полного использования возможностей этих методов и составляет содержание предмета «планирование эксперимента». В настоящее время экспериментальные методы широко используются как в науке, так и в различных областях практической деятельности. Обычно основная цель научного исследования состоит в том, чтобы показать статистическую значимость эффекта воздействия определенного фактора на изучаемую зависимую переменную. Как правило, основная цель планирования экспериментов заключается в извлечении максимального количества объективной информации о влиянии изучаемых факторов на интересующий исследователя показатель (зависимую переменную) с помощью наименьшего числа дорогостоящих наблюдений. К сожалению, на практике, в большинстве случаев, недостаточное внимание уделяется планированию исследований. Собирают данные (столько, сколько могут собрать), а потом уже проводят статистическую обработку и анализ. Но сам по себе правильно проведенный статистический анализ недостаточен для достижения научной достоверности, поскольку качество любой информации, получаемой в результате анализа данных, зависит от качества самих данных. Поэтому планирование экспериментов находит все большее применение в прикладных исследованиях. Целью методов планирования экспериментов является изучение влияния определенных факторов на исследуемый процесс и поиск оптимальных уровней факторов, определяющих требуемый уровень течения данного процесса.
II. Методы машинного обучения и Data Mining